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We study the mixing of fluid in a viscously decaying row of point vortices. To this 
end, we employ a simplified model based on Stuart’s (1967) one-parameter family of 
solutions to the steady Euler equations. Our approach relates the free parameter to 
a vortex core size, which grows in time according to the exact solution of the 
Navier-Stokes equations for an isolated vortex. In this way, we approach an exact 
solution for small values of .!/Re. We investigate how the growing core size leads to 
a shrinking of the cat’s eye and hence to fluid leaking out of the trapped region into 
the free streams. In particular, we observe that particles initially located close to 
each other in neighbouring intervals along the streamwise direction escape from the 
cat’s eye near opposite ends. The size of these intervals scales with the inverse square 
root of the Reynolds number. We furthermore examine the particle escape times and 
observe a self-similar blow-up for the particles near the border between two adjacent 
intervals. This can be explained on the basis of a simple stagnation-point flow. An 
investigation of interface generation shows that viscosity leads to an additional 
factor proportional to time in the growth rates. Numerical simulations confirm the 
above results and give a detailed picture of the underlying mixing processes. 

1. Introduction 
The mixing of two fluids is of considerable interest in a variety of natural and 

technical processes. The spreading of pollutants in the atmosphere, in rivers, oceans 
or groundwater reservoirs, for example, falls into the first category, whereas 
applications might concern the efficient mixing of two reacting species in a chemical 
reactor or a combustion chamber. Depending on the specific problem, either 
convective or diffusive effects can dominate, although often both of them are 
essential. In this paper, we attempt to study the fluid mixing that occurs in an 
unsteady non-periodic two-dimensional prototype flow involving viscous as well as 
inertial effects, namely in a viscously decaying row of point vortices. This idealized 
situation is relevant for temporally evolving mixing layers. Our interest focuses on 
the mixing of a passive scalar, i.e. we will study the dynamics of tracer particles that 
faithfully follow the fluid. 

Recently, several researchers have addressed the problem of mixing of a passive 
scalar in incompressible flow from the dynamical systems point of view. Using the 
analytical tools provided by dynamical systems theory, one can show that many 
simple unsteady laminar flows are non-integrable, and hence can give rise to chaotic 
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particle trajectories, thus resulting in efficient mixing. This observation forms the 
basis of what has become known as chaotic advection (Aref 1984) or Lagrangian 
turbulence (Dombre et al. 1986). In  order to exploit the powerful concepts related to 
dynamical systems theory, almost all the work performed so far concerns two- 
dimensional potential or Stokes flow with periodic perturbations or three- 
dimensional steady flows at finite Reynolds numbers. Thus, the unsteady velocity 
fields investigated in the past represent opposite ends of the Reynolds-number 
spectrum : momentum is transported exclusively by convection or diffusion, 
respectively. 

The work by Aref & Balachandar (1986) on chaotic advection in Stokes flow 
clearly demonstrates that  a smooth Eulerian velocity field can lead to chaotic 
particle paths. I n  other words, Lagrangian turbulence can be expected to occur even 
at vanishing Reynolds numbers, whereas Eulerian turbulence is usually observed 
only for Reynolds numbers exceeding a certain threshold value. Jones & Aref (1988) 
furthermore show that circulation is not a necessary ingredient for obtaining chaotic 
advection ; unsteady irrotational velocity fields as well have the ability to efficiently 
stir passive scalars. Aref & Jones (1989) investigate the interplay of reversible Stokes 
flow and particle diffusion, modelled in a random walk fashion, to maximize the rate 
at which diffusing particles can separate. Khakhar, Rising & Ottino (1986) study 
some of the above as well as other flows in more detail, employing dynamical systems 
theory. The work of Rom-Kedar, Leonard & Wiggins (19DO) concerns the case of a 
translating point-vortex pair perturbed by a small-amplitude time-periodic flow. By 
applying Melnikov’s analysis, they demonstrate the existence of Smale horseshoes 
leading to chaotic particle dynamics and hence to  efficient mixing of the fluid near 
the unperturbed separatrices. Flows involving finite-Rayleigh-number effects in 
convection have been studied by Arter (1983) and Solomon & Gollub (1988). Finite- 
Reynolds-number effects are also included in the paper by Jones, Thomas & Aref 
(1989) on steady flow through a twisted pipe. Finally, Broomhead & Ryrie (1988) 
study particle transport between Taylor vortices near the onset of instability as a 
function of perturbation amplitude. While most of the above contributions represent 
combinations of analytical and numerical work, Ottino & co-workers have also 
performed a series of experimental studies concerning chaotic advection in smooth 
flows. References, as well as many instructive pictures of flow visualization 
experiments, can be found in the recent book by Ottino (1989), which contains an 
excellent collection of material concerned with the kinematic aspects of mixing. 
Experimental work has also been reported by Chaiken et al. (1986). 

Two-dimensional unsteady finite-Reynolds-number flows such as the viscously 
decaying row of point vortices to be considered in this paper, on the other hand, are 
often non-periodic, and hence the related mixing processes are not as amenable to an 
analysis based on dynamical systems theory. In  particular, powerful concepts such 
as Poincar6 sections are of limited help. Enhanced mixing occurs even though the 
underlying flow field does not give rise to chaotic advection. Hence, in the present 
paper, we have to resort to other analytical and numerical means to study quantities 
of interest such as, for example, interfacial stretching rates. Some guidance can be 
found in earlier work studying particle transport in an inviscid, i.e. non-decaying row 
of point vortices corresponding to the well-known streamline pattern of the Kelvin 
cat’s eyes. In particular, Jimenez ( 1980) modelled the entrainment and mixing 
between two streams initially separated by a straight interface on the basis of an 
infinite row of point vortices placed along the interface. I n  this time-independent 
velocity field, he observes the progressive stretching and folding of the interface into 
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the form of spirals around the point vortices. I n  this way, the interfacial arclength 
between the two fluids grows continuously within the cat’s eye. No fluid is exchanged 
between the interior and the exterior of the cat’s eye, as the streamline pattern does 
not change in time. However, Jimenez finds that, if in addition he allows for pairing, 
this simple model reproduces the visual growth rate quite well. 

Roberts (1985) modifies the above analysis and studies the case in which the row 
of point vortices is displaced into the faster stream a small distance away from the 
interface. This approach can be rationalized by remembering that the dominant sign 
of vorticity comes from the boundary layer of the faster stream. It has the further 
advantage of simplifying the computational interface tracking, as it avoids the 
problem of velocity singularities. Roberts also considers various degrees of 
concentration of the vorticity by employing Stuart’s (1967) one-parameter family of 
solutions to the Euler equations. He presents numerically integrated interfacial 
shapes for various parameter combinations and finds good qualitative agreement 
with experimental observations. 

In  the present paper, we will add the effect of viscous decay to  the problem, and 
it will become evident how this aspect fundamentally changes the nature of the flow, 
especially as far as the mixing between different fluid regions is concerned. Our 
starting point is the well-known fact that  the equations of motion for passively 
advected particles in an unsteady two-dimensional incompressible flow are given by 

Here $(x, y, t)  has the interpretation of a time-dependent stream function. Since (1) 
also takes the form of Hamilton’s canonical equations of motion, $(x, y, t) can be 
interpreted as a time-dependent one-degree-of-freedom Hamiltonian for the flow (see 
Aref 1984). Hence, a given stream function completely determines the subsequent 
particle paths whose coordinates are (x(t), y(t)). Our goal is to introduce a model 
which captures the effects of viscous decay in a shear layer since we do not have 
analytical solutions to  the full Navier-Stokes equations available. We then use this 
model to study the dynamics and mixing of particles as they move through this shear 
layer. The same problem could, in principle, be studied by direct numerical 
simulation of the NavierStokes equations ; however, an advantage to  our approach 
is its simplicity which allows us to make analytical progress. 

Our model is based on Stuart’s one-parameter family of solutions to the two- 
dimensional Euler equations (Stuart 1967 ; Pierrehumbert & Widnall 1981) 

where 1 is the distance between two vortices and AUis the velocity difference between 
the two streams forming the shear layer. We normalize the solution by taking 1 and 
AUI47t as the characteristic scales for length and velocity, respectively. The 
dimensionless stream function +(x, y )  then becomes 

@(z, y) = In [cosh (27ty) - p  cos (27tz)I. (3) 

The parameter p indicates the concentration of vorticity: p = 1 corresponds to a 
periodic row of point vortices, p = 0 corresponds to parallel shear flow. The 
streamlines for this solution trace out the well-known cat’s eye shown in figure 2 (a) .  
I n  the model to be presented in this paper, we will relate the free parameter p,  which 
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determines the shape of the cat’s eye, to the vortex core size. Subsequently, we will 
simulate the effect of viscosity by letting this core size grow in time in analogy to the 
Oseen vortex, which represents a self-similar solution to  the Navier-Stokes equations 
describing the viscous growth of an isolated vortex core (e.g. Panton 1979). As a 
result of the core growth, the cat’s eyes, i.e. the separatrices, shrink in time which 
leads to new and interesting phenomena. While in the inviscid case, fluid initially 
within the cat’s eye does not mix with the outside fluid, viscosity causes the trapped 
fluid to leak out of the cat’s eye. Furthermore, different fluid regions initially trapped 
mix much more efficiently under the effect of small viscosity. Owing to the effect of 
viscosity, the flow becomes explicitly time-dependent ; thus a particle which is 
initially trapped within the cat’s eye will escape through a separatrix a t  some finite 
time. This leads to an infinite number of alternating layers within the cat’s eye which 
become infinitesimally thin near the vortex centre. These layers characterize initial 
data according to whether a particle will escape above the mixing layer and continue 
moving right, or below the mixing layer and continue moving left. The process of 
crossing the separatrix in the flow is the essential mechanism which leads to sensitive 
behaviour and enhanced mixing. This theory has been developed and exploited in 
other contexts, see for example Timofeev (1978), Tennyson, Cary & Escande (1986), 
as well as Bourland & Haberman (1990). In  the present paper, we focus on quantities 
that characterize the mixing of fluids, such as local and global interface stretching 
rates, fluxes across separatrices etc. 

The paper is structured in the following way. Section 2 contains a discussion of the 
model we use to  simulate the effects of viscosity on the shear layer. The rationale for 
the model is described, as are its limitations. In $ 3  we describe a convenient 
mathematical tool we use in following the background flow and evolution of the 
phase plane. The background flow for the decaying shear layer is described and the 
reasons for the presence of the alternating layers inside a shrinking cat’s eye are 
explained. Section 4 describes a scaling theory which shows how the alternating 
layers scale with the Reynolds number. We compare our theory with numerical 
simulations and find close agreement. In  addition, we compute the flux of the fluid 
across the separatrix. In  $5 we describe results which predict the escape times for 
particles starting inside the mixing layer to  exit from the cat’s eye. Section 6 contains 
a discussion of particle and fluid mixing and the role which viscosity plays in this 
problem. We also describe the phenomenon of interface stretching. Finally, $7 
contains a discussion of the various shortcomings of the model as well as current and 
future directions. 

2. Viscous model 

equations, known as the Oseen vortex, has a velocity profile given by 
A well-known self-similar solution to the radially symmetric Navier-Stokes 

vs(r, t )  = L( 27cr 1 -exp( -&)). (4) 

Here vg is the solution to the &direction momentum equation, r is the circulation, 
and v is the viscosity. If we introduce the Reynolds number Re = r/v and normalize 
so that r = 1, we can interpret the above velocity field as that of a viscously diffusing 
point vortex, whose core size r grows like u = (4vt)f = (4t/Re)i (Paton 1979). The first 
goal is to  incorporate this behaviour into our model. It is straightforward to see that 
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FIGURE 1 .  The u-velocity profile for the cat’s eye at z = 0. The profiles correspond (from right to 
left) to values for p of 1, 0.99, 0.97, 0.95, 0.9, 0.8, 0.65, and 0.5. Notice how the velocity profile 
changes from that corresponding to a row of point vortices to that of a plane shear layer as the 
value of p decreases. 

the cat’s eye of the Stuart vortex (3) is widest at the origin x = 0. The y-coordinate 
of the separating streamline along this line is then given by 

(5) 
1 

2x 
yw =-cosh-’(1+2p). 

We would like to relate p to a core size which we then let grow in time. To do this, 
it is useful to  look a t  the velocity profile of the Stuart vortex shown in figure 1. From 
this, i t  seems natural to define the core size, u, as the vertical distance from the origin 
to  y ( u  = urnax), where u,,, is the maximal velocity in the x-direction. From (3) we see 
that 

This gives a formula for the x-component of velocity from (1) : 

$(x = 0, y )  = In (cosh (2xy) - p ) .  (6) 

From this we compute au/ay (x = 0, y) : 

Setting the numerator of (8) to zero and solving for y gives y ( u  = urnax), 
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FIGURE 2. Our model for the viscous growth of the vortex cores leads to a variation of the 
streamline pattern with time. Shown are snapshots of instantaneous streamline patterns for values 
of t /Re of ( a )  0, ( b )  0.005 and (c) 0.1. Notice how the cat's eye shrinks in time, thus trapping less 
and less fluid. 

We then let g = (4t/Re)i and invert (9) to obtain 

1 

cosh [ 4x (&-,"I * 

P ( t )  = 

Thus p(0)  = 1 corresponds to  the periodic row of point vortices and p(m)  = 0 
corresponds to parallel shear flow. The width of the cat's eye, yw, given by ( 5 )  then 
goes from a value of yw(t = 0) = (1/2x) cosh-' (3) initially to yw(t+ m )  = 0. 

Thus, the time-dependent stream function for our model is given by the Stuart 
vortex (3), with the free parameter p evolving in time according to (10). Several 
snapshots of the instantaneous stream function are shown in figure 2. Here we show 
only one window (-0.5 6 2 6 0.5) of the flow field a t  various times. The flow field for 
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other windows is a periodic extension of that shown. Thus, our model takes into 
account the viscous diffusion of each point vortex as if it were isolated from the rest 
of the field. It does not, for example, take into account the effects of neighbouring 
vortices on the core growth and therefore does not include the effects of core 
deformation and filamentation seen in other works. For this reason, we expect our 
results to be applicable only for small values of the scaled variable .!/Re. See 
Appendix A for a brief discussion of the error introduced by our model. 

3. Phase plane dynamics 

of motion (l) ,  (3), (10) give 
We next study in more detail the particle motion governed by (1) .  The equations 

2n sinh (2n y ) - -- dx 
dt cash ( 2 7 ~ ~ )  -p( t )  cos (2x2) ’ 

dY -2xp(t) sin (27tx) 
--r 
dt cash ( 2 ~ y ) - p ( t )  cos ( 2 7 ~ ~ ) .  

The fixed points of ( l l ) ,  (12) are given by y = 0; xn = + ~ ,  where n is any positive 
integer. The nature of the fixed points is determined by the eigenvalues of the 
linearized flow, which yield 

Thus, for n even, the eigenvalues are purely imaginary, hence the fixed points are 
elliptic centres. These correspond to the vortex centres. For n odd, the eigenvalues 
are purely real and correspond to hyperbolic saddles. The evolution of the eigenvalues 
in the complex plane as time evolves are shown in figure 3. As the vortex core grows, 
the eigenvalues corresponding to the hyperbolic saddle move toward the origin. For 
this configuration the eigenvalues collide only in the limit t +  m. This signifies the 
disappearance of the cat’s eye. For other configurations, collision of the eigenvalues 
can occur after a finite time, which has interesting consequences. This will be 
discussed in a separate publication. 

In the absence of viscosity, the cat’s eyes do not shrink and hence a particle 
initially trapped will remain trapped forever, undergoing periodic motion. Closed- 
form solutions can be derived for this case (Roberts 1985). The period of oscillation 
depends on the initial particle location and ranges from zero at  the vortex centre to 
infinity a t  the separatrix. As a result of the viscous vortex core growth, a particle 
initially trapped within a cat’s eye oscillating around the vortex centre will 
eventually escape through the separatrix. If the particle escapes above the x-axis 
(y > 0) it will continue travelling to the right above the mixing layer along the 
instantaneous streamlines shown in figure 2. If the particle escapes below the x-axis 
( y  < 0) it  will continue travelling to the left below the mixing layer. As a result, these 
two particles which both started within the cat’s eye will separate, their distance 
going to infinity as time evolves. Figure 4 shows a schematic diagram of this process. 
There are infinitely many alternating intervals, In, along the x-axis inside the cat’s 
eye, becoming increasingly thin as they approach the vortex centre. These layers 
characterize the initial particle positions according to whether a particle will escape 
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I r = c o  

FIGURE 3. Evolution of eigenvalues: (a) n even, ( b )  n odd. 

FIGURE 4. Schematic diagram of particles escaping from the cat's eye as a result of the shrinking 
of the trapped region due to viscosity. Actual particle paths are shown. 

above the mixing layer ( ln ,  n odd) or below the mixing layer (Zn, n even). For 
example, a particle starting in the interval 1, along the x-axis will escape through the 
top of the separatrix on its first half-cycle around the vortex centre. A particle 
starting in the interval I ,  will escape through the bottom of the separatrix on the 
second half-cycle. Since the particles travel faster the closer they are to the vortex 
centre, one can find a particle which loops around the centre an arbitrarily large 
number of times before i t  escapes by choosing its initial position to be arbitrarily 
close to the centre. This then implies that there must be an infinite number of these 
alternating layers getting increasingly thin but such that : 

W 

=' 
n 2'  

n=1 

An important consequence of these layers is that one can find (near the vortex centre) 
an arbitrarily large number of particles which start infinitesimally close to each other 
but which ultimately separate in alternating directions, one above the mixing layer, 
the other below, the next above, etc. This enhances the mixing process and is a purely 
viscous effect. 
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FIQURE 5. A comparison between the exact solution for y,(t/Re) according to our model and 
two- and three-term short-time expansions corresponding to (16). 

4. Scaling results for the interval sizes 
4.1. Results for 1, 

To investigate how the interval lengths 1, depend on the parameter characterizing 
the flow, i.e. on the Reynolds number, we will employ series expansions valid for 
short times. This approach is consistent with the viscous model introduced in $ 2 ,  
which represents a close approximation to the real flow for small values of t /Re .  We 
will justify this approach below by comparing our scaling results with a numerical 
simulation of the problem. As shown above, the half-width of the cat's eye varies 
with time as 

(15)  
2 [ cosh [27c (Er]]' 

1 
2x 

yw = -COsh-' 1 + 

By expanding in powers of @/Re) we obtain the short-time expansion (for details, 
see Appendix B) 

for the half-width of the cat's eye. We flnd that the initial rate a t  which the width 
of the cat's eye decreases-as expressed by the O(t/Re)  term-is inversely 
proportional to the Reynolds number. Figure 5 compares the series expansion with 
the exact result (15). If we can now specify the time it takes for the cat's eye to shed 
the particles initially distributed along the interval I , ,  we can compute the amount 

8 FLM 227 
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FIGURE 6. The particles crossing the y-axis in the interval Ayl originate from the x-axis 
interval Axl, i.e. 1,. 

by which the width of the cat’s eye decreases during that time, which in turn would 
allow us to obtain E l .  A slight complication arises through the fact that the particle 
marking the border between 1 ,  and 1, stays within the cat’s eye for an infinitely long 
time. Furthermore, neighbouring particles will stay within the cat’s eye for finite but 
arbitrarily long times. This issue will be discussed in detail in $5. Consequently, we 
instead aim a t  obtaining an approximate value t, for the time a t  which the shedding 
of 1 ,  is largely completed and the shedding of 1, becomes the more dominating effect. 
For this purpose, we define as the characteristic velocity u, the u-velocity at x = 0, 
y = yw at time t = 0 ,  and as the characteristic length 1, we take half the perimeter of 
the cat’s eye a t  t = 0. These quantities will then allow us to  compute the 
characteristic time t, as t ,  = lc/u,. From the general form of the velocity (7), and with 
yw given by (5), we obtain 

u,(p) = 4x (LY. 
l + P  

With (10) this yields the maximum velocity at the dividing streamline 

so that the desired characteristic velocity becomes 

u,(t = 0) = 2 4 2 x .  (19) 

The perimeter length, S, of the cat’s eye can be computed from the equation 
governing the shape of the separatrix 

(20) cash (2x7~) - P  cos ( 2 7 ~ ~ )  = 1 +P.  

With 

However, we were unable to integrate this expression analytically. As our expression 
for the characteristic velocity was only an approximate one, an approximate value 
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for the perimeter length as well will be sufficient for the present purposes. 
Recognizing that the shape of the cat's eye is not too different from that of an ellipse 
with half-axes t and yw, we can estimate its half-length as 

L = $(f+ yw) (23) 

which yields L ( p )  = + a  cosh-l(l+ 2p). ( 2 4 )  

By again assuming p to depend on time according to our viscous model, and by 
expanding in powers o f t  we obtain 

This results in a leading-order estimate of the characteristic time t,: 

cosh-' (3). +- +fx+icosh-l(3) 1 1 -- - 
8 4 2  8427c  

t, = 
2 .\/2x 

We can now proceed to calculate the amount Ayl by which the half-width of the cat's 
eye decreases while the particles in 1, are being shed from its interior as 

AY1Z -= dyw ( t  = 0) t,. ( 2 7 )  

(28) 
1 

Ay - - (an + 4 cosh-'(3)). 
I - R e  

This results in 

It is left now to translate Ayl into 1, (figure 6). In a way that is consistent with the 
above approximations, we can establish this relationship for the time-independent 
flow field corresponding to t = 0. Owing to the acceleration of the fluid particles as 
they leave the vicinity of the stagnation point, the distance between the separatrix 
(20 )  and a nearby streamline $€, 

$€ = In (cosh (27cy) - p  cos (2x2)) = In (1 f p - e ) ,  (29 )  

varies strongly between the stagnation-point region and the widest part of the cat's 
eye. At x = 0, the y-coordinate of $€ can be approximated as 

= -1n 1 ( 3 - ~ + ( 8 - 6 6 ~ ) : )  
27c 

so that we obtain 

8 x- 
4 427c (31) 

8-2 
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FIGURE 7. A comparison between the scaling result (34) and ‘exact’ numerical solutions for the 
interval size I ,  as a function of the Reynolds number. The numerical results confirm that 1, scales 
with the inverse square root of Re. 

Near the left stagnation point, on the other hand, $e is given by 

$c = ln(1-cos(2xx)) = ln(2-e) (32) 

which can be expanded to obtain an approximation for the point a t  which +c crosses 
the x-axis 

Hence we recognize that the particles crossing the interval Ay, cc emerge from a 
region Ax, cc 6; near the left stagnation point. Since we had found Ay, cc Re-’ we can 
conclude Ax, cc Re-;, i.e. that the interval 1 ,  scales with the inverse of the square root 

Reynolds number. With the above estimates for the characteristic time we 
the quantitative relationship 

of the 
obtain 

1 ,  x , (7t+ cosh-’(3)); 
2i(xRe)~ 

x Re-;. (34) 

It is straightforward to derive ‘exact ’ numerical results by performing a time- 
dependent simulation and iterating for the initial particle position that results in 
infinite escape times from the interior of the cat’s eye. Figure 7 compares the 
numerically obtained data for l,(Re) with relationship (34). It is obvious that for 
sufficiently large Re the functional dependence in the form of Re-; is satisfied very 
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well. The constant factor between the two curves is a result of the approximation 
entering the estimated characteristic time. Only for Re < 100 do we see a deviation 
from Re-;. This is a consequence of the rapid growth of the vortex core a t  these low 
values of Re, which requires us to consider higher-order terms in the expansions for 
yw and t ,  as well. 

4.2. Results for I ,  
As a next step, we will derive scaling results for l , ,  i.e. the lengths of x-axis intervals 
whose particles leave the cat’s eye during successive half cycles. This is 
straightforward if we continue to limit ourselves to small values of t/Re. Then the 
leading-order approximation for the rate a t  which the width of the cat’s eye 
decreases and for the characteristic time are still valid. We obtain 

Ayc = Ay,, i = 2,3 ,  ..., (35) 

i.e. each time the particles corresponding to one interval 1, escape, the cat’s eye 
shrinks by the same amount. From the above results (31) and (33) for 1, it follows 
with (35) that 

= T ( A y l ) ~ ( n ~ - ( n - l ) ; )  8; I 1  

RZ 

For n $ 1, it is furthermore straightforward to show that 

Keeping in mind that the constant factor is a result of the approximations leading 
to estimates for t ,  we compare the scaling result 

1,  ~ R e - i ( n i - ( n - l ) i )  (39) 

and the numerically obtained results in figure 8 for Re = 1000. Here the value of the 
proportionality factor for the sake of comparison has been chosen so that the two sets 
of data agree for n = 1 .  We find reasonable agreement and thus confirm the above 
scaling result. 

It would now appear to be straightforward to improve the agreement between the 
series expansion solutions and the ‘exact’ numerical results by taking into account 
that both the shrinkage rate and the characteristic time itself are functions of time, 
i.e. by considering the next terms in the series expansions (18) and (25) .  This leads 
to 
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FIGURE 8. A comparison between the scaling result (39) (curve) and numerical results (dots) for the 
interval sizes Z,(n) for Re = 1000. The proportionality constant has been selected such that the two 
data sets agree for 1,. 

This expression indicates that  the duration of shedding cycles grows in time, as the 
characteristic velocity u, decreases more rapidly than the perimeter half-length. 
However, as figure 9 shows, this is in contrast to the results of numerical simulations 
discussed in more detail below, which show that the difference between the escape 
times of successive intervals in general decreases. The reason for this discrepancy lies 
in the fact that the choice of the maximum velocity occurring along the separatrix 
as the characteristic velocity has serious shortcomings. Just  before a particle leaves 
the interior of the cat’s eye, it spends most of its time near the stagnation point in 
a region of very small velocities, i.e. velocities significantly different from our choice 
of u,. Since u, does not account for this effect, we cannot base the calculation of 
improved characteristic times on it. The fact that u, still leads to the correct 
functional dependency of 1, on Re is not surprising if we realize that any constant 
would have given us the proper functional form. We will present an alternate way to 
compute the escape time for particles in I, in $ 5 ;  however, the extension to 
subsequent intervals is not straightforward. We have been unable to obtain an 
accurate expression for the O(t/Re) term in the expansion for t, and thus develop a 
better concept for establishing characteristic times leading to  improved estimates for 
more than one shedding cycle. However, in Appendix C we will outline how the next 
term in the expansion for t,, were it available, could be employed to obtain improved 
results for 1,. 

From figure 8, we recognize that the length I, of an interval decreases as n 
increases, which means that with each half-cycle a smaller and smaller amount of 
fluid leaks out of the cat’s eye. I, will have to  asymptotically approach zero, as the 
width of the cat’s eye tends to  zero only for infinite time. The amount of fluid left 
within the cat’s eye and the flux across the separatrix at time t can easily be 
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cvaluated. This second quantity is helpful in characterizing the mixing of the fluids. 
From (20) we obtain for thc shape of t h e  separatrix 

so that the area A of the cat’s eye depends on p as 

Figure 10(a) shows how A(t/Re)/A(O) approaches zero as t/Re increases. The flux 
across the separatrix dA/d(t/Re) normalized by A ( 0 )  is given by 

Figure lO(6) shows the flux as a function of time, normalized 

5. Escape times 
For the present flow field, we will analyse two different mixing events: how the 

fluid within the cat’s eye is mixed with the fluid outside, and how the fluid initially 
in the top half of the cat’s eye mixcs with that in the bottom half. The crucial 
parameter characterizing the efficiency of the mixing process is the rate a t  which 
interfacial area is generated. This, in turn, depends on two different mechanisms: 
first, on the rate a t  which new lobes of fluid emerging from the cat’s eye are being 
formed (corresponding to the escape layers discussed in §4), and second, on the rate 
at which the interface of each lobe is stretched. The local rate of interface stretching, 
especially during the early stages of the lobe’s existence, is intimately linked to the 
escape times of the particles forming the lobe’s interface. The reason for this lies in 
the fact that, within a given interval I , ,  the escape time of a particle varies from a 
minimum value for a particle placed somewhere in the interior of the interval, to 
infinity for a particle placed a t  the interval endpoints. Hence, in this section we will 
analyse the escape times of the particles distributed along an interval. We define the 
time of emergence of lobe i as the time a t  which the first particle from interval I ,  
escapes from the cat’s eye, i.e. is located outside the separatrix. We will analyse the 
formation of the first lobe in detail before proceeding to the emergence of subsequent 
lobes. 
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5.1. Formation of the Jirst lobe 

Figure 11 shows the numerically obtaincd escape times of particles distributed along 
1, for Reynolds numbers of 100 and 1000. The most striking feature lies in the fact 
that  for each Re most particles escape from the cat’s eye at essentially one time level, 
i.e. in the plot of escape time 21s. initial location a plateau exists, stretching from 
x = -t to near the opposite end of I,. This observation of the nearly simultaneous 
escape of the bulk of particles leads us  to the conclusion that at this particular time 
the material line element formed by the particles initially distributed along the 
interval I, is almost identical to the instantaneous separatrix near x = -$ On this 
basis, we can calculate the escape time for I ,  as a function of the Reynolds number, 
since it is given by the time a t  which the slope of the scparatrix equals the slope of 
the line of marker particles near the left stagnation point. With (41) for the cat’s eye’s 
separatrix, we obtain for its slope 

dy - p sin ( 2 x x )  
dx 
--- 

(( 1 + p + p cos ( Z ~ X ) ) ~  - 1): ’ 

While the slope is, of course, not defined at the stagnation point (-a, 0) itself, we can 
expand the right-hand side to obtain the slope near x = -$. By introducing x‘ = x +  8 
and considering only the leading order terms, wc find 

which yields 

p( 2 n d  - . . .) -- dY - 
dx’ (( 1 +p-p(  i - 2 x 2 d 2  + . ..))’- 1); 

(47 1 

near the stagnation point. Since p depends on time as shown in 52, this expression 
is consistent with the known slopes of the separatrix at t = 0, dy/dx = 1, and t + CO, 

dy/dx + 0. 
As a next step, we have to find the slope of the material line of marker particles. 

Keeping in mind that the stagnation point will for all times remain part of that 
material line, we can calculate its slope as that of the straight line between the 
stagnation point and the position ( x i .  y;) of a particle initially located at (-$+ E ,  0). 
For this purpose, we consider the velocity field around the stagnation point as time 
independent, so that we can write for ( x i ,  y;) 

where we again use the coordinates x’ = x + f ,  y‘ = y. Close to the stagnation point 
the velocity ficld has the form u = Ay’,v = Ax‘. For the flow field under 
consideration, the &earn function (3) leads to 
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FIGURE 11. Escape times for particles initially distributed along 1 , :  ( a )  Re = 100, ( b )  Re = 1000. 
Kotice the existence of a plateau value indicating that most particles escape from the cat's eye at 
the same time. Based on this observation, we can approximately calculate the plateau time. 
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so that for t = 0, i.e. p = 1, we obtain 

From this we get, the position of a marker particle: 

From the initial conditions x’,(O) = e. yi(0) = 0, the constants are given by C, = C2 = 
&. The slope of the material line can then be cvaluat,ed and is given by 

We note that this expression for the slope of the matcrial line is valid for all times 
in the case of a time-dependent velocity field. The escape time is now given by 

1 

(cosh [ 2n ($)tl)t tanh (2x9) = pf = 

which, for small tlRP, we can expand: 

tanh (2n2t) = 1 

(57) 

As t itself is not necessarily small, we cannot expand the left-hand side to obtain 
an explicit equation for t .  Howevcr. an iterative numerival solution of (57) gives 
tesc(Re = 100) - 0.10, and tesr(Ke = 1000) - 0.15. These results are in reasonable 
agreement with figure 11. More important, they show the correct behaviour of 
increasing escape time with increasing Re. The quantitative error is due to the 
assumption of a time-indepcndent velocity field. 

5 . 2 .  Formution of subsPquPnt lobes 

Figure 12 presents the escape times of particles distributed ovcr the first ten intervals 
1, to I , ,  for Re of 100 and 1000. Wr recognize that, except for the first interval, the 
escape times do not exhibit the plateau-like behaviour described above. The obvious 
reason lies in the fact that for i > 1 the marker particles representing I ,  are not aligned 
with x-axis a t  the beginning of the half-cycle during which they will escape from 
the cat’s eye. Hence, thcrc will not be a time at which the material line element 
represented by these particles collapses with the instantaneous separatrix, as was the 
case for 1,. Consequently, the concept for calculating escape times presented in the 
previous section cannot be cxtended beyond I , .  We notice that, as i increases, the 
part of 1, closer to the centre of the cat’s eye tends to escape earlier than the region 
of 1, closer to the stagnation point. This reflects the slowdown experienced by 
particles as they pass closely by the stagnation point. Comparison of the results for 
Re = 100 and Re = 1000 confirms the scaling of the interval size with RP in the 
manner discussed in $4. We furthermore see that the minimal escape times for each 
interval increase a t  a slower rate for Re = 100 than for K e  = 1000. Figure 9 shows the 
minimal escape time as a function of the interval number. After an initial transient 
period, the escape time depends linearly on the interval number. Th t  transient period 
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FIGURE 12. Escape times for partirles initially distributed along the first ten intervals I ,  to  Z,": ( a )  
I k  = 100. ( 6 )  Re = 1000. While we observe the esistence of a plateau for I ,  as discussed above, such 
plateaux do not exist for subsequent intervals. K'otice the  sharp increase of the particle escape 
times near the borders between two adjacent intervals. A partirle initially located exactly on the 
border between adjacent intervals will s tay within the cat's eye for infinitely long times. 

lasts longer for the higher value of Re. This linear behaviour represents an a posteriori 
justification for estimating the 1, in $4 on the basis of a constant characteristic time, 
and it explains why this estimate provcd to be fairly accurate. 

5.3.  Self-similarity in the lobe formation process 
In this section, we will focus our attention on the small region around the border 
between 1, and I , ,  and on how a particle's escape time depends on its starting position 
in this region. Figure 13(u)  shows a blow-up of this region for H e  = 1000. I n  figure 
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F~GURE 13. Particle escape times in the region surrounding the border of 1, and 1, for Re = 1000. 
Observe the self-similar blow-up of the escape times as we focus on a smaller and smaller region 
next to  the border. The horizontal scale in ( h )  has been stretched by a factor of 1000 compared with 
(a),  and in (c)  by a further 10000. 
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13(b) the horizontal scale has been stretched by a factor of 1000, and in figure 13(c) 
by another factor of 10000. We recognize that the particle escape time increases in 
a self-similar fashion as we approach the boundary between I ,  and 1,. In  order to 
explain this behaviour of the real flow, we will study the simplified generic problem 
of flow near a stagnation point as sketched in figure 14 in the coordinate system x’, 
y’. Close to  the stagnation point, thc velocity field is given by 

This coordinate system is not related to the system x‘,y‘ used above. The stream 
function $f has the form 

$‘(x‘, y’) = - Ax‘Y‘. (61) 

As a result, streamlines arc given by 

where yief represents the y’-coordinate of the streamline a t  x’ = - 1, where the 
particle is assumed to  be at t = 0. We now proceed to find the position at which a 
particle path intersects the separatrix, upon which we can determine the time a t  
which the particle crosses the separatrix, i.e. the particle escape time. As a first 
approximation, we assume the velocity field to be time independent, whereas in the 
full problem both the streamlines and the separatrix change with time. Consequently, 
the particle paths arc identical to the streamlines and given by (62) near the 
stagnation point. We can assume the separatrix to be a straight line near the 
stagnation point 

y‘ = -Ox’ (63) 

so that we obtain the y’-coordinate of the point of intersection as 

YInt = (YieEb)’. 

Since v is a function of y’ only, we can now determine the time it takes a particle to 
travel from yieI to thc escape point yint as 

With (64) we obtain 

We can now translate this analysis to the original problem by interpreting yief as the 
small distance between a particle starting position and the border between 1, and I , .  
We thus recognize that the cat’s eye flow field gives rise to the self-similar logarithmic 
blow-up of the escape time as shown in figure 13(a-c).  

We furthermore observe that if we plot the x-component of the escape location as 
a function of (x+t)/l, ,  we obtain ident’ical curves for Re = 100 and Re = 1000 (figure 
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FIQURE 14. 

, y’ 

* x‘ 
- 1  

Sketch of generic stagnation point flow employed to explain the self-similar 
blow-up of the escape times near the interval borders. 

- 1  I- 
Sketch of generic stagnation point flow employed to explain the self-similar 

blow-up of the escape times near the interval borders. 

15). This implies that as we vary Re, the evolution of the separatrix and the material 
line element do not change independently from each other. Rather, the separatrix 
and the material line element are affected by Re in such a way that a particle released 
at (x+f)/l, escapes from the cat’s eye at  the same x-location, independent of the 
Reynolds number. 

6. Mixing 
In this section, we will focus our attention on the generation of interfacial area, 

which is essential for the efficiency of the mixing process. As mentioned above, we are 
interested in two different mixing processes: the mixing of the fluid inside the cat’s 
eye with that outside of it, and the mixing of the fluid initially in the top half of the 
cat’s eye with that in the bottom half. For this purpose, we have performed a 
numerical simulation of the full problem, the results of which are depicted in figure 
16. We consider the fluid that is initially located between the separatrix and the 
streamline that intersects the x-axis at the border between 1, and 1,. We track the 
fluid by placing several hundred marker particles along its envelope at  time t = 0 and 
computing their trajectories by means of a Runge-Kutta time integration scheme. 
The fraction of this fluid initially located in the top half of the cat’s eye is depicted 
as black, that in the bottom half as white. The reason for not simply considering the 
full top and bottom of the cat’s eye halves is that the interface between the two 
would pass through the initial point-vortex singularity, thus causing numerical 
problems due to infinite velocities. Hence we mark the inner region of the cat’s eye 
as cross-hatched, and the numerical simulation will reveal the evolution of its outer 
boundary. We observe that at  time t = 0.101 bulges of black and white fluid, 
respectively, are forming near the stagnation points. Those fluid regions initially 
closer to the centre of the cat’s eye, however, have already left the stagnation-point 
region and are on their way to the opposite stagnation point. At t = 0.201, a first lobe 
of escaping fluid is visible near each of the stagnation points, and patches of fluid of 
opposite colour are now beginning to form next to them. These patches have begun 
to escape by t = 0.301, while the first pair of lobes has been stretched out to a thin 
filament, primarily under the action of the strain field outside of the cat’s eye and 
near the stagnation point. At  t = 0.401, new patches of fluid of the same colour as the 
first lobe are forming near the stagnation points. Meanwhile, the previous lobes have 
formed thin filaments within the filaments from the first escaping lobes. At t = 0.501, 
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FIQURE 15. 2-Coordinate of the escape locations of the particles initially distributed along 1,: ( a )  
Re = 100, ( b )  Re = 1000. The two curves are almost identical, indicating that the evolution of the 
separatrix and the material line element occurs in a coupled fashion as we vary Re. 
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FIGURE 17. Growth of the interfacial length between the black fluid initially trapped within the 
cat’s eye and the fluid outside. While the interface would riot grow for inviscid flow, viscosity and 
the related effect of fluid leakage lead to an interfacial growth approximately proportional to  time : 
(a )  Re = 100, ( b )  Re = 1000. 

0.601, and 0.701, we see parts of the new patches escape, while the rest of them travel 
on to the opposite stagnation point. 

The picture that emerges from this simulation is that, through a process of 
stretching and folding, lobe after lobe forms and subsequently is being stretched out  
into a thin filament. As a result, small-scale striations develop near the stagnation 
points and in the regions outside the cat’s eye. The cross-hatched region marking thc 
fluid initially a t  the centre of the cat’s eye shrinks in the transverse direction while 
expanding in the streamline direction. If we were to continue this simulation, wc 
would soon see the first of the cross-hatched fluid escaping near the stagnation point. 

We can now estimate the rate a t  which interfacial area is being generated between 
the fluid that initially residcs within the cat’s eye and that outsidc. The dominant 
factor determining the total interfacial area is the formation of the thin filamented 
lobes of escaping fluid. Consequently. the interfacial growth rate should bc nearly 
proportional to  the speed of the tip of the filament. If, to a first approximation, wc 
consider the velocity field as time-independent. the velocity of the tip will perform 
a periodic oscillation in time as it passcs \jy cat’s eye aftcr eat’s eye. Since the path 
length that the tip traverscw across cvwh cat‘s eyr’ is identical, thc total interfacial 
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area should grow approximately linearly in time, which is confirmcd by the 
numerical results presented in figure 17. This is in contrast to the inviscid flow, in 
which no fluid escapes from the cat’s cye, so that the total interfacial arca is not a 
function of time. As a result, we notice that for the flow under consideration, 
viscosity leads to a growth proportional to  time of the interface between the fluid 
inside and that outside of the rat’s eye. Figure 17 furthermore shows that for Re = 

100 the proportional factor is larger than for RP = 1000, which does not come as a 
surprise as lobes form a t  a fastcr rate for He = 100. 

For the case of interface generation between the fluid initially in the upper half and 
that initially in the lower half of the cat’s eye, the situation is a slightly different one. 
Evcn for the time-independent inviscid velocity field, the interface grows linearly in 
time (figure 18). If we let the cat’s eye evolve in time under the action of viscosity, 
the interface grows more rapidly. We can estimate this ratc of growth by realizing 
that the interfacial length depends on the lcngth of the evolving filaments, as within 
each filament we have a thinner filament of opposite fluid. Furthermore, it depends 
on the number of evolving filaments, i.e. the ratc a t  which lobes escape. Since we 
noticed above that each filament grows approximately linearly in time, and since we 
showed in $ 5  that, after an initial transicnt, the number of lobes grows linearly in 
time as wcll, we expect the total interface to grow approximately quadratically in 
time, which is confirmed by thc numerical simulation (figure 18). Again, viscosity 
adds a factor o f t  to the growth rate of the interface. 

7. Summary and conclusion 
The present papcr represents a study of fluid mixing in a row of viscously diffusing 

point vortices. Our model is based on Stuart’s one-parameter family of solutions to 
the steady Euler equations. We relate the free parameter to the core size of thc 
vortices, which we subsequently let grow according to the exact solution of thc 
Navier-Stokes equations for an isolated diffusing point vortex. While we do not have 
an exact solution for a row of viscously diffusing point vortices, our model 
approaches that solution for small values of t / M e .  In comparison with a numerical 
solution of the Navier-Stokes equations (which would be hard to obtain owing to  the 
initial singularity), the current approach allows us to investigate some aspects of the 
flow analytically. I n  particular, we havc focused on a description of how the 
shrinking of the cat’s eye is related to fluid leaking out of the trapped region into the 
free streams. We observe that fluid from neighbouring intervals in the cat’s eye 
escapes in opposite directions, thus giving rise to an infinite number of lobes or 
filaments. The size of these intervals I, scales with the inverse square root of the 
Reynolds number and depends on n. These results have been confirmed numerically. 
We furthermore observe the existence of a plateau in the escape time for the particles 
located within I , ,  which allows us to derive a general relationship describing the 
escape time as a function of the Reynolds number. However, this approach is valid 
only for the first interval. We furthermore observe a self-similar blow-up of the 
escape time for the particles near thc border betwecn two adjacent intervals, which 
can be explained on the basis of a simple stagnation-point flow. 

When analysing the interface generation or stretching rate between the fluid 
initially trapped inside the cat’s eye and that outside, we notice that viscosity leads 
to  an interface growth proportional to  t .  For the interfacial area separating the fluid 
in the top half of the cat’s eye from that in the bottom half, viscosity is shown to lead 
to  an increase in the growth rate from O ( t )  to O ( t 2 ) .  Thus, and this represents the 



240 E. Meiburg and P .  K .  Newton 

35 - 

30 - 

25- 

8 20- 
c 
5 15- 

10 - 

5 -  

c 

0 c 

0 0.1 0.3 0.5 0.7 0.9 1 . 1  1.3 1.5 
Time 

35 - 

30 - 

25-  

8 20-  

S 

1 5 -  

10 - 

5 -  

1 1 1 1 1 1 1 , 1 1 1 1 1 1 1 1  

0 0.1 0.3 0.5 0.7 0.9 1.1 1.3 1.5 0 0.1 0.3 0.5 0.7 0.9 1.1 1.3 1.5 
Time 

FIQC.RE 1 8 ( u . h ) .  For cuption see faring page. 

central conclusion of the present study, viscosity fundamentally changes the flow as 
far as mixing is concerned, by leading to an additional factor o f t  in the interface 
growth rate for both cases investigated. This is perhaps somewhat surprising as in the 
previously mentioned studies of chaotic advection the stretching rate is typically 
exponential. 

A logical extension of the current work will have to include dynamical effects of 
the vortices as well, i.c. the tendency of the row of vortices to become unstable and 
undergo a pairing process. This step is expected to significantly change the 
underlying mixing processes and affect the interfacial growth rates, and it is hoped 
to result in a better understanding of the evolving small-scale structures and 
entrainment processes. In addition. we believe that the results presented here should 



Mixing in a t*iscou.sly decaying shear layer 24 1 

Time 

FIGURE 18. Generation of interfacial length between the black and white fluid regions. While the 
interface grows linearly in time for the inviscid case ( a ) ,  the formation of fluid filaments due to 
viscosity leads to interface growth rates of O ( t 2 ) :  (6)  Re = 100, (c) Re = 1000 (the dotted curve is 
a parabolic fit). 

be applicable to  other configurations such as the Karman vortex street or plane jets 
idealized by diffusive point vortices. 
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Appendix A. Error between model and exact solution 

equation and the continuity equation are 
In the vorticity-stream-function formulation, the two-dimensional Navier-Stokes 

wt + $ky w, - $k, wy = vv2w,  

$y -ox - 9, wy = 0, 

E(z ,  y, t )  = - (Wt  - VVZW). 

(A 1 )  

VZ$ = --o. (A 2) 

(A 3) 

the error E ( z ,  y,  t )  between our viscous model and the true solution of (A l ) ,  (A 2) is 
given by the terms in (A 1) we ignored. Hence 

Since the stream function (3) with our model assumption (10) satisfies 

(A 4) 
To explicitly compute E ,  we denote the stream function as 

$w, y, 1 )  = In lV(% Y? t)l 
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where V ( X ,  y, t )  = cosh ( 2 x 1 ~ )  -p(t) cos (2x.r).  
Then the vorticity can be computed from (A 2 ) :  

w = - V ' $ h = - - ( V $ ) +  - + - . v ((3 (3 
After some tedious algebra, this simplifies to 

0 = -(2x)2(1-p2)/q? (A 8 )  

- 2(2x)2pp  2(2xy (1  -p2) p cos (2xx) 

Using this expression in (A 4) gives the following formula for the error: 

Jqx, y, = + 
v2 P3 

Sincc p ( O , O , O )  = 0 and p(0 )  = 1,  the error at the vortex centre a t  time t = 0 is 
undefined. For all positivc times, however, (A 9) gives an explicit) expression for thc 
error in the vorticity distribution at any point in the (x, y)-plane. The possibility of 
using this expression to choose a better p(t) is currently being explored. 

Appendix B. Short-time expansion for the half-width of the cat's eye 
The half-width of the cat's eye as function of t/Re is given by (15). By expanding 

x2 x4 

2 !  4! 
cash z = 1 + -+-+ . . . 

16& 320x4t2 
yw = -Gosh-' 1+2-- ( Re 

we obtain 
2x 

which we can rewrite as 

Expanding 

we recover 

t t2  

Re Re2 
yw = yo+yl-+yz-+ ... 

Comparison of the O(t/Re) terms leads to 
8 X  

" = -sinh (2xy0) ' 

If we use the result for yo in this expression, we obtain 

The O(t2/Re2) terms lead to 
y1 = --2/87c. 

22 -2/2x3 
Y Z  = 3 

which results in the short time expansion 

for the half width of the oat's eye. 
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Appendix C. Improved estimates for 1, 

can write, for the sake of brevity, 

t l ,  = a, 
tzc = a+&, = a(1 + b ) ,  

t3, = a+b(t,,+t,,) = a ( l + b ) ' ,  

t i ,  = a( 1 + b) i - l .  

Assuming we have an expression for the characteristic time accurate to O(t/Re), we 

t,  = a+bt+O(t2) (C 1) 

(C 2) 1 
so that we get 

As the length of a shedding cycle varies, so does the rate at which the width of the 
cat's eye shrinks. From (16) we have 

t + O(t2). 
d Y w  - 487~ 4442x3 - - -- 
dt Re + 3Re2 

By writing, again for the sake of conciseness, 

dy, = c + et + O(t2) 
dt 

-(t dYw = 0) = c, 

-(t dYW = tl ,+tzc) = c+e(2a+ba), 

dt 

dYw - ( t  = tl,) = c+ea, 
dt 

dt 

we obtain 

This allows us to compute the amount Ayi by which the cat's eye shrinks over the 
duration of the ith shedding cycle 

As before, we employ 

to obtain 

where we can utilize the expression (C 6) to evaluate 1, 

I ,  = ~ ( ( ~ [ c - F + ~ ( l  +b)"-' 1 7  a(l  +b)l-' 

- [il [ c - ~ + ~  ae ae (1 + b)i-'] a( 1 + b) ( - lY ) .  (C 9) 

i-1 
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This in turn can be simplified for n 9 1 to  yield 
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8f [c -ae /b+ae/b( l  +b )n- l ]a ( l  +b)n- l  

2 / 2  (z [ c -  ae/b +ae /b (  1 + b) i - l ]  a( 1 + b)i-l 

=- 

)i 
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